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Abstract. Excursion sets of Gaussian random fields are used to model the 3D morphology

of differently manufactured porous glasses, which vary with respect to their mean pore widths

measured by mercury intrusion porosimetry. The stochastic 3D model is calibrated by means

of volume fractions and two-point coverage probability functions estimated from tomographic

image data. Model validation is performed by comparing model realizations and image data in

terms of morphological descriptors which are not used for model fitting. For this purpose, we

consider mean geodesic tortuosity and constrictivity of the pore space, quantifying the length

of shortest transportation paths and the strength of bottleneck effects, respectively. Addi-

tionally, a stereological approach for parameter estimation is presented, i.e., the 3D model is

calibrated using merely 2D cross sections of the 3D image data. Doing so, on average, a com-

parable goodness-of-fit is achieved as well. The variance of the calibrated model parameters is

discussed, which are estimated on the basis of randomly chosen, individual 2D cross sections.

Moreover, interpolating between the model parameters calibrated to differently manufactured

glasses enables the predictive simulation of virtual, but realistic porous glasses with mean pore

widths that have not yet been manufactured. The predictive power is demonstrated by means

of cross-validation. Using the presented approach, relationships between parameters of the

manufacturing process and descriptors of the resulting morphology of porous glasses are quan-

tified, which opens possibilities for an efficient optimization of the underlying manufacturing

process.
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1. Introduction

Porous glass (PG) is characterized by a precisely controllable mean pore width, a narrow dis-
tribution of pore widths as well as a regular interconnected pore structure [1]. By manufacturing
nanoporous glasses, three-dimensional reaction spaces with mean pore widths ranging from a
few (approx. 2 nm) to several thousand nanometers can be designed [2]. In the pore system,
interactions between different substances as well as interactions of substances with the pore wall
can be investigated. This is of particular interest for mechanistic studies on the interaction,
flow and diffusion of liquids as a function of their complexity [3–5] as well as biologically active
substances, e.g., for enzymes, viruses, bacteria, catalytic reactions, and protein dynamics [6–8].
Moreover, PG can be used as a reservoir, e.g., for storage and sustained release of drugs [9].

Porous glasses are produced in two ways: by the sol-gel [10] and the controlled porous glass

(CPG) process, also known as the VYCOR® process [11]. In both cases, phase separation
is induced in a homogeneous mixture. The separation can be chemically initiated in case of
sol-gel materials or thermally initiated in CPG. The resulting porosity and pore width are
mainly controlled by three factors, namely the composition of the homogeneous mixture as
well as time and temperature of phase separation. In the case of CPG, the aim of phase
separation is to create two chemically different phases with an interconnected structure, where
one of the phases has a composition of more than 96 mol-% SiO2. Due to different solubility,
the non-silicate rich phase can be dissolved, resulting in an open porous, three-dimensional
SiO2 component after a cleaning and drying step [12, 13]. Since these pore structures can be
reproducibly manufactured with a high accuracy regarding the pore width, porous glasses are
used as calibration materials for standard pore structure analytics such as nitrogen adsorption
and mercury intrusion. Furthermore, they are suitable as a model system to investigate volume
and surface effects on crystallisation and diffusion processes [14–18].

Besides porosity and mean pore width, further morphological descriptors of the transport
phase, i.e., the pore space in our case, have a strong influence on physical properties such as, e.g.,
effective diffusivity. Thus, a quantitative understanding of relationships between parameters of
the manufacturing process, morphological descriptors of the 3D nanostructure and physical
materials properties is required to generate nanoporous glasses with predefined morphological
and physical properties. Note that this kind of morphological influence has been quantified for
porous silica manufactured by sol-gel processes in [19] as well as for larger classes of porous or
composite materials in [20–24].

In the present paper, we use stochastic 3D modeling to generate digital twins of 3D image
data representing the morphology of nanoporous glass. In this way, we can quantify the influ-
ence of mean pore width, measured by mercury intrusion porosimetry and adjustable during
the manufacturing process, on further morphological descriptors that are experimentally not
accessible. For the latter, we consider descriptors for the length of transportation paths and
the strength of bottleneck effects, which–in turn–have a strong influence on physical transport
properties, like effective diffusivity [22] and liquid imbibition [25, 26] , where we consider three
CPGs with different mean pore widths and one silica monolith manufactured as described in [27]
and [28], respectively.

Our modeling approach is based on excursion sets of Gaussian random fields, see Chapter 16
in [29]. In particular, this means that the model can be directly calibrated to the materi-
als morphology observed in 3D image data instead of modeling the movement of atoms and
molecules during the manufacturing process. Thus, the presented approach conceptually dif-
fers from previous models for CPGs, which use molecular dynamics simulations [30, 31]. Note
that excursion sets of Gaussian random fields have been exploited to model the morphology of
various functional materials, such as electrodes in solid oxide fuel cells [32–35], electrodes in gas-
diffusion electrodes [36], aerogels [37], concrete [38], nanoporous gold [39], and Vycor glass [40].
The excursion set model used in the present paper allows for statistically mimicking the 3D
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nanostructure of the considered glasses with only three model parameters. Model validation
is performed by comparing morphological descriptors of simulated and measured image data,
which have not been used for model fitting. Since our model calibration is based on 3D image
data, the acquisition of which is costly and time-consuming, we also show how to use 2D cross
sections to stereologically estimate the model parameters. Moreover, we discuss the quality of
these estimates in detail.

Furthermore, by interpolations in the parameter space, we can predict the morphology of
CPGs with mean pore widths that have not been investigated by 3D imaging or that have
even not been manufactured so far. Thus, the presented data-driven modeling approach pro-
vides a framework to generate a comprehensive database of virtual (but, nevertheless, realistic)
nanoporous glasses, which in future work can be used as an input for numerical simulations
of effective physical properties, such as considered, e.g., in [25, 41]. This allows, in addition
to investigating relationships between parameters of the manufacturing process and descrip-
tors of the resulting morphology, to quantitatively study relationships between morphology and
physical materials properties with a reduced experimental effort.

✿✿

In
✿✿✿✿✿✿

other
✿✿✿✿✿✿✿

words,
✿✿

in
✿✿✿✿

this
✿✿✿✿✿✿

paper
✿✿✿

we
✿✿✿✿✿✿✿

present
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿

four
✿✿✿✿✿✿

main
✿✿✿✿✿✿✿✿✿

novelties:
✿✿✿

(i)
✿✿✿✿✿✿✿

Model
✿✿✿✿✿✿✿✿✿✿

validation

✿

is
✿✿✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

transport-relevant
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

microstructure
✿✿✿✿✿✿✿✿✿✿✿

descriptors
✿✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

constrictivity

✿✿✿✿

and
✿✿✿✿✿✿✿✿

geodetic
✿✿✿✿✿✿✿✿✿✿✿

tortuosity,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿✿✿

standard
✿✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

literature
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿

insight

✿✿✿✿

into
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

goodness
✿✿✿

of
✿✿✿✿✿✿✿

model
✿✿✿

fit,
✿✿✿✿✿✿✿✿✿✿✿✿

particularly
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿

respect
✿✿✿

to
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

applicability
✿✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿

investigating

✿✿✿✿✿✿✿✿✿✿✿✿

relationships
✿✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿

morphology
✿✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

transport.
✿✿✿✿✿

(ii)
✿✿✿

A
✿✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿

analysis
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

performed
✿✿✿

of

✿✿✿✿

how
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

variance
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿

behaves
✿✿✿

in
✿✿✿✿

the
✿✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

estimation
✿✿✿✿✿✿

from

✿✿✿✿✿

single
✿✿✿✿

2D
✿✿✿✿✿✿

image
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-sections
✿✿✿✿✿

and,
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

particular,
✿✿✿✿

how
✿✿✿✿✿

this
✿✿✿✿✿✿

affects
✿✿✿✿✿✿✿✿✿✿✿

tortuosity
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

constrictivity.

✿✿✿✿

(iii)
✿✿✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

discussion
✿✿✿✿✿✿✿✿✿✿

provided
✿✿✿✿✿✿✿✿✿

regarding
✿✿✿✿

the
✿✿✿✿✿✿✿

choice
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

functions
✿✿✿

of
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

underlying
✿✿✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿✿

random
✿✿✿✿✿✿

fields
✿✿

is
✿✿✿✿✿

also
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

state
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

art.

✿✿

In
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

literature,
✿✿✿✿

see
✿✿✿

for
✿✿✿✿✿✿✿✿✿

example
✿✿✿✿

[39],
✿✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿

assumed
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿

spinodally
✿✿✿✿✿✿✿✿✿✿✿✿

decomposed
✿✿✿✿✿✿✿✿✿✿

materials
✿✿✿✿

can

✿✿

be
✿✿✿✿✿✿✿✿✿

modeled
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿

functions
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿

form
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρ(h) = sin(ah)/ah,
✿✿✿

for
✿✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿

a > 0.

✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿

data-driven
✿✿✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿

shows
✿✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

microstructures
✿✿✿✿✿✿✿✿✿✿✿

considered
✿✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿

presnt

✿✿✿✿✿

paper
✿✿✿✿✿✿✿✿

cannot
✿✿✿

be
✿✿✿✿✿✿✿✿✿

modeled
✿✿✿✿✿✿✿✿✿✿✿

sufficiently
✿✿✿✿✿

well
✿✿✿✿✿

with
✿✿✿✿✿

this
✿✿✿✿✿

kind
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

functions.
✿✿✿✿✿

(iv)
✿✿✿✿✿✿

Last

✿✿✿

but
✿✿✿✿

not
✿✿✿✿✿✿

least,
✿✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿

space
✿✿✿

of
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

parameters,
✿✿✿

we
✿✿✿✿

are
✿✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿✿

predict
✿✿✿✿

the

✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿✿✿✿

morphology
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

nanoporous
✿✿✿✿✿✿✿

glasses
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

pore
✿✿✿✿✿

sizes.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Cross-validation
✿✿✿✿✿✿

shows
✿✿✿✿✿

that

✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿

works
✿✿✿✿✿

well.
✿

The rest of this paper is organized as follows. Descriptions of materials and 3D imaging
are provided in Section 2. Then, in Section 3, the stochastic 3D model for the generation of
digital twins of nanoporous glasses as well as its calibration to 3D image data is explained.
The estimation of model parameters based on 2D cross sections is discussed in Section 4. In
Section 5, relationships between parameters of the manufacturing process and descriptors of the
3D morphology is investigated, which is the basis for the predictive simulation of nanoporous
glasses not yet observed by 3D imaging. Finally, Section 6 concludes.

2. Materials and 3D imaging

2.1. Description of materials. CPGs in shape of thin plates with mean pore widths of 100,
150 and 200 nm, respectively, were prepared as described in [27]. Additionally, a silica monolith
with a mean pore width of 1000 nm was prepared via a sol–gel process using the procedure
reported in [28]. The mean pore widths have been determined by means of mercury intrusion
porosimetry. For the 1000 nm sample, a solution of urea and polyethylene oxide (PEO) was
prepared in distilled water under vigorous stirring for 30 min at room temperature. Afterwards,
sulfuric acid and tetraethoxysilane (TEOS) were added. Then, after additional 30 min of
vigorous stirring, the mixture was poured into a polytetrafluoroethylene (PTFE) lined stainless
steel autoclave. The reaction mixture, consisting of 17 g of H2O, 4.21 g of urea, 2.20 g of
PEO, 2.52 g of H2SO4 and 15.51 g of TEOS, was submitted to thermal treatment. In a first
step, gelation was performed at 40− 50◦C for 24 h. In a second step, hydrothermal treatment
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was performed at 120 ◦C for 20 h. After cooling, the wet gel obtained was removed from the
autoclave and washed with water until the pH was neutral. The wet gel was then submerged in
water inside a plastic tube and dried at 120 ◦C for 24 h. Thereafter, the xerogel obtained was
calcined at 600 ◦C for 8 h, using a heating rate of 3 ◦C min−1 starting from room temperature.
In the following, we denote the samples described above by CPG100, CPG150, CPG200, and
CPG1000, respectivley, in dependence on the corresponding mean pore width.

2.2. 3D imaging and image preprocessing. Imaging experiments were performed with a
X-ray microscope Zeiss Xradia 810 Ultra that operates with a chromium X-ray source (5.4
keV) using phase-contrast imaging mode. For this purpose, a gold phase-ring, with a thickness
designed to produce a phase-shift of 3π/2 of the non-diffracted X-ray beam, was positioned near
the back focal plane of the zone plate. In the imaging experiments, a total of 901 projections
was obtained over 180◦ with exposure time and detector binning depending on the given sample,
see Table 1. Image reconstruction was performed by the filtered back-projection algorithm [42]
implemented in the software XMReconstructor, which is part of the Xradia 810 Ultra.

Table 1. Summary of conditions under which 3D imaging was performed.

sample name exposure time [s] voxel size size of sampling window [voxel]

CPG100 100 16 nm 643× 595× 529

CPG150 80 32 nm 350× 316× 504

CPG200 70 32 nm 362× 317× 420

CPG1000 75 128 nm 358× 314× 310

The commercial software Thermo Scientific Avizo (version 9.4.0) was used for image pre-
processing. First, a non-local means filter as described in [43] is applied in 3D with a fixed
search window of 21× 21× 21 and a cubic similarity neighborhood of 5× 5× 5 voxel, where the
similarity factor is chosen to be 1. The segmentation of image data, i.e., the classification of
each voxel as either pore or solid, was performed using the auto threshold module in Avizo with
the IsoData criterion. Note that this Avizo module was also used in [44] for the segmentation
of image data representing glass foams. For CPG200 as an example, a comparison between the
greyscale image after noise reduction by filtering and the segmented image is shown in Figure 1.

(a) (b)

(a) (b)

Figure 1. 2D cross-section of the greyscale image of sample CPG 200 after
noise reduction by filtering (a) and the corresponding segmented cross-section
(b), where the solid phase is represented in blue and the pore space in dark grey.
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3. Stochastic 3D modeling

We now present a stochastic model for mimicking the 3D morphology of the nanoporous
glasses described in Section 2.1. The modeling idea, together with some fundamental formulas,
is stated in Section 3.1. These formulas are then used in Section 3.2 for the calibration of
model parameters. In Section 3.3, a physico-chemical interpretation is given for the parametric
covariance model considered in Section 3.2. Furthermore, model validation is explained in
Section 3.4, where morphological descriptors not used for model calibration are compared to
each other for image data of real and simulated nanoporous glasses.

3.1. Model description and some fundamental formulas. The solid phase of the nano-
porous glasses is modeled by excursion sets of Gaussian random fields, see also [29, 45]. For
an introduction to Gaussian random fields and their geometric properties, we refer to [45,
46]. Consider a motion-invariant (i.e., stationary and isotropic) Gaussian random field X =
{X(u) : u ∈ R

3} such that EX(u) = 0 and VarX(u) = 1 for each u ∈ R
3. Let ρ : R3 × R

3 → R

denote the covariance function of X, i.e., ρ(u, v) = Cov(X(u), X(v)) for all u, v ∈ R
3. Note that

by the motion invariance of X, the value ρ(u, v) does only depend on the distance |u−v| between
u, v ∈ R

3. Hence, with some abuse of notation, we write ρ(h) = ρ(u, v) for any h ∈ [0,∞), where
u, v ∈ R

3 are arbitrary points in the three-dimensional Euclidean space R
3 with h = |u− v|.

By considering the (random) subset of R3, where the random field X exceeds a predefined
value λ ∈ R, we obtain a so-called excursion set Ξ = {u ∈ R

3 : X(u) > λ}, which is then
used to model the solid phase of the CPGs. Note that under the conditions mentioned above,
the distribution of X depends only on the covariance function ρ : R3 × R

3 → R. Thus, the
distribution of the random set Ξ is uniquely defined by ρ and the threshold λ ∈ R. This means
that in order to properly calibrate the model, ρ and λ have to be estimated based on information
from the 3D image data described in Section 2.2.

For this purpose, we make use of some fundamental formulas, which are true for volume
fractions and two-point coverage probability functions of excursion sets of motion-invariant
Gaussian random fields. First, we consider the volume fraction ε = E(Ξ∩[0, 1]3) of the stationary
random set Ξ. It can be easily shown that ε = P(o ∈ Ξ)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ε = P(X(o) > λ), where o ∈ R
3 denotes

the origin. Thus, because by definition it holds that P(o ∈ Ξ) = P(Xo) > λ), we get that

ε = 1− Φ(λ), (1)

where Φ : R → [0, 1] denotes the distribution function of the standard normal distribution. We
can therefore estimate the threshold λ through Equation (1) by estimating the volume fraction
ε from 3D image data, see Section 3.2 below.

Moreover, we consider the two-point coverage probability function C : [0,∞) → [0, 1] of Ξ,
which is defined by C(h) = P(o ∈ Ξ, u ∈ Ξ) for each h ≥ 0, where u ∈ R

3 is an arbitrary point
with |u| = h. Note that the random excursion set Ξ inherits its motion invariance from the
corresponding property of the underlying random field X. Furthermore, the two-point coverage
probability function C of Ξ can be expressed via an analytical formula by the covariance function
ρ of X, where

C(h) = ε2 +
1

2π

∫ ρ(h)

0

e−
λ
2

1+z

√
1− z2

dz, (2)

for each h ∈ [0,∞), see Proposition 16.1.1 of [29].

3.2. Model calibration by 3D image data. The procedure for calibrating the level-set
model Ξ described in Section 3.1 is as follows. We first estimate

✿✿✿✿✿✿✿✿

compute
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

estimator
✿✿̂

ε
✿✿✿

for
✿

the
volume fraction ε of Ξ by means of the point-count method, see

✿✿✿✿✿

from
✿✿✿✿✿✿

image
✿✿✿✿✿

data
✿✿✿

as
✿✿✿✿✿✿✿✿✿✿

described

✿✿

in
✿

Section 6.4.2 of [45]. That is, we count the number of voxels in some cubic sampling window
W ⊂ R

3, which belong to the solid phase, and divide the result by the total number of voxels
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in W . This yields an estimator ε̂ for ε. Then, in view of Equation (1), an estimator for λ is
given by

λ̂ = Φ−1(1− ε̂ ). (3)

Numerical results for ε̂ and λ̂, which have been obtained for the four samples CPG100, CPG150,
CPG200, and CPG1000, are shown in Table 2.

Table 2. Estimates for volume fraction and model parameters.

sample ε̂ λ̂ â [1/µm] b̂ [1/µm2]

CPG100 0.503 −0.007520 26.88 38.20

CPG150 0.503 −0.007520 19.28 14.87

CPG200 0.487 0.03259 15.32 5.813

CPG1000 0.460 0.1004 3.900 1.270

To obtain an estimator Ĉ for C, we use an algorithm based on the fast Fourier transform,
as described in Section 6.2.3 of [47]. Since the Fourier transform assumes that the underlying
image data is periodic, there are often undesirable boundary effects. In order to avoid this,
we first mirror the segmented image data along the facets of the cubic sampling window W in
the three axis-directions of R3, before estimating C. This increases the volume of the sampling
window by a factor of 8, but removes artifacts of the boundary in the Fourier domain. Note that
for any h ∈ [0,∞) the right-hand side of Equation (2) is strictly increasing in ρ(h). Thus, after
replacing C(h), ε and λ with their respective estimators, we can solve Equation (2) for ρ(h)
numerically using the method of bisection for every h ∈ [0,∞). This gives us a non-parametric
estimator ρ̂ for ρ. The estimator ρ̂ is then used as a basis for a parametric covariance model.
It turns out that a good fit can be achieved by assuming that ρ is of the form

ρ(h) =
sin(ah)

ah
exp(−bh2) (4)

for each h ∈ (0,∞) and some parameters a, b > 0, see Figure 2.
Here one can observe that the location of the minimum of ρ̂ is closely related with the

mean pore width of the respective sample. The estimators â and b̂ for the parameters a and
b are obtained by using a least squares approach to fit a function ρ̂

â,̂b
of the form given in

Equation (4) to the (non-parametrically) estimated covariance function ρ̂, see Table 2. Recall
that the latter one is numerically computed by means of Equation (2), using the two-point

coverage probabilities Ĉ(h) directly estimated from image data. Virtual glass morphologies
generated by the calibrated stochastic 3D model and

✿✿✿✿✿✿✿

cutouts
✿✿

of
✿

the corresponding tomographic
image data are visualized in Figure 3.

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿✿

simulating
✿✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿✿

random
✿✿✿✿✿✿

fields,
✿✿✿

we
✿✿✿✿

use
✿✿✿

the
✿✿✿✿✿✿✿✿

Fourier

✿✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿✿✿

described
✿✿✿

in
✿✿✿✿✿✿✿✿

Section
✿

7
✿✿✿

of
✿✿✿✿

[32]
✿

.
✿

3.3. Physico-chemical interpretation of the parametric covariance model. Due to the
product form of the correlation function given in Equation (4), the underlying Gaussian random
field X of our level-set model Ξ can be represented as the product of two independent random
Gaussian fieldsX1 andX2, i.e., X(u) = X1(u)X2(u) holds for each u ∈ R

3, where the covariance
function of X1 and X2 is given by

ρ1(h) = sin(ah)/ah and ρ2(h) = exp(−bh2), (5)

for each h ≥ 0, respectively.
Based on the physico-chemical theory of phase separation [48], random fields with a covariance

function of the form given in Equation (5) for ρ1 have been used to model the morphology
of spinodally decomposed materials, see, e.g., [39, 49]. The nanoporous glasses considered
in the present paper, manufactured as stated in Section 2.1, can be described as spinodally
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(a) (b)(c) (d)

(a) (b)

(c) (d)

Figure 2. Non-parametric estimator ρ̂ (blue) for the covariance function ρ,
computed for CPG100 (a), CPG150 (b), CPG200 (c) and CPG1000 (d), to-
gether with its parametric least squares (LS) fit (red) using Equation (4). For
comparison, the best parametric fit for ρ1 given in Equation (5) is also shown.

decomposed materials. Nevertheless, one can clearly observe that the covariance function ρ1
given in Equation (5) does not reflect the non-parametric estimator ρ̂ of ρ computed from
tomographic image data sufficiently well, see Figure 2.

This discrepancy between covariance functions determined from image data and covariance
functions of the form of ρ1 has already been observed in the literature. In particular, the
covariance function used for modeling the morphology of spinodally decomposed Vycor glass
shows a behavior that is qualitatively similar to that of the covariance functions which we
obtained from our tomographic image data for nanoporous glasses. This can be seen when
comparing Figure 2 of the present paper with Figure 12 of [40]. On the other hand, random
fields, whose covariance functions have the form of ρ2, are appropriate to model the morphology
of various heterogeneous materials such as gel permeated with a critical nitrobenzene/hexane
solution [50], and also various electrode materials [33, 36].

Since the non-parametric estimator ρ̂ of ρ computed from tomographic image data of the
nanoporous glasses considered in this paper exhibits a faster decay than ρ1, we modelled the
3D morphology of these glasses by random level-sets Ξ which are induced by Gaussian random
fields with a covariance function ρ = ρ1ρ2, where ρ1 and ρ2 have the form given in Equation (5).
Note that multiplying ρ1 with ρ2 leads to an exponential decay of ρ = ρ1ρ2, where the influence
of ρ2 is stronger for larger values of the model parameter b > 0 introduced in Equation (4).
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(a) (b) (c) (d) (e) (f) (g) (h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Top row: 3D renderings of tomographic image data representing
cubic cutouts (with a side length of 4.8 µm) of the samples CPG100 (a),
CPG150 (b), CPG200 (c) and CPG1000 (d). Bottom row: digital twins drawn
from the models fitted to CPG100 (e), CPG150 (f), CPG200 (g), CPG1000 (h).

We still mentioned another remarkable property of the level-set Ξ induced by a motion-invariant
Gaussian random field X = X1X2, where X1 and X2 are independent Gaussian random fields
with covariance functions ρ1 and ρ2 of the form given in Equation (5). Note that for the
expected surface area per unit volume of excursion sets induced by X1 and X2, respectively,
analytical formulas are known, see Equation (8) in [36] and Equation (12) in [39]. Thus, based
on Equations (6.163)–(6.165) in [45] and due to the fact that

lim
h→0+

d2

dh2

(
sin(ah)

ah
exp(−bh2)

)
= −a2

3
− 2b,

we obtain that

SΞ =
2

π
√
3
exp

(
−λ2

2

) √
a2 + 6b, (6)

where SΞ denotes the expected surface area per unit volume of the random level-set Ξ, induced
by X for some threshold λ ∈ R. This means in particular that for a given threshold λ, the value
of SΞ is monotonously increasing in the parameters a and b, while for given a and b, it takes its
maximum at λ = 0, i.e., at a porosity ε = 0.5.

3.4. Model validation by morphological descriptors. The level-set model Ξ, which has
been introduced in Section 3.1 and calibrated by 3D image data in Section 3.2, is evaluated by
considering various morphological descriptors of tomographic and simulated image data. More
precisely, for each of the four samples CPG100, CPG150, CPG200 and CPG100, we compare
morphological descriptors computed from tomographic image data with the corresponding de-
scriptors computed from model realizations, where we average over 10 realizations drawn from
the calibrated model with a size of 400× 400× 400 voxel. Note that doing so, we generate vir-
tual nanostructures of different physical sizes for each sample, see Table 1 for voxel and window
sizes used for the different samples. This is reasonable, since larger window sizes are needed for
representativity in case of larger mean pore widths. The latter effect is illustrated in Figure 3
and quantitatively represented by the covariance functions shown in Figure 2.

First, we consider two classical morphological descriptors of binary image data: the volume
fraction and the specific surface area, i.e. the expected surface area per unit volume, of the
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foreground phase. Recall that we use the point-count method in order to estimate volume
fractions from voxelized data, see Section 3.2. To do this for the specific surface area, we
exploit the algorithm described in [47]

✿✿✿✿✿✿✿

[47, 51]. For the fitted level-set models, we additionally
compute the specific surface area by means of the analytical formula given in Equation (6). The
obtained results are visualized in Figure 4.

✿✿✿

The
✿✿✿✿✿✿

good
✿✿✿✿✿✿✿✿✿✿✿

accordance
✿✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿✿✿✿

values
✿✿✿✿✿✿✿✿✿✿

estimated

✿✿✿✿

from
✿✿✿✿✿✿✿

image
✿✿✿✿✿

data
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿

ones
✿✿✿✿

can
✿✿✿✿

also
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

explained
✿✿✿

by
✿✿✿✿

the
✿✿✿✿

fact
✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

to

✿✿✿✿✿✿✿✿

estimate
✿✿✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿✿✿

area
✿✿✿✿✿

does
✿✿✿✿

not
✿✿✿✿✿✿✿

merely
✿✿✿✿✿✿

count
✿✿✿✿

the
✿✿✿✿✿

faces
✿✿✿

of
✿✿✿✿✿✿

voxels
✿✿✿

at
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interface.
✿✿✿✿

The
✿✿✿✿✿✿

local

✿✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

surface
✿✿✿✿✿

area
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

determined
✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

2× 2× 2
✿✿✿✿✿

voxel
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

configurations,
✿✿✿✿✿✿✿

which

✿✿✿✿✿✿✿

reduces
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿

voxel
✿✿✿✿✿

size.
✿

(a) (b)
(a) (b)

Figure 4. Comparison of volume fraction (a) and specific surface area (b) com-
puted from tomographic (blue) and simulated (red) image data. For the specific
surface area, we also show the values (green) which have been obtained by the
analytical formula given in Equation (6).

The volume fractions shown in Figure 4 exhibit a nearly perfect fit. This is not surprising,
as they are used to estimate the model parameter λ, see Section 3.2. The specific surface areas
computed from simulated image data also nicely coincide with those computed from tomographic
image data. Furthermore, similar values have been obtained by means of the analytical formula
given in Equation (6).

Additionally, we evaluate the level-set models by means of further morphological descriptors
which have not been used for model fitting. To begin with, we consider the spherical contact
distribution function H : [0,∞) → [0, 1] of the pore space (see, e.g., [52]), where H(r) is the
(conditional) probability that the minimum distance from a randomly selected point of the pore
phase Ξc to the solid phase Ξ is less or equal than r, for each r ≥ 0. Formally, H(r) can be
defined as

H(r) = P
(
o ∈ Ξ⊕B(o, r) | o ∈ Ξc

)
,

where B(o, r) is the ball with radius r centered at the origin o ∈ R
3, and A⊕B denotes

Minkowski addition of the sets A,B ⊂ R
3, see Section 1.3 in [45]. Comparing the spherical

contact distribution functions computed from tomographic image data with those of simulated
data shows an excellent fit for all four samples, see Figure 5.

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿

simulated
✿✿✿✿✿

data,
✿✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿✿✿

values

✿✿✿✿

over
✿✿✿

10
✿✿✿✿✿✿✿✿✿✿✿✿

realizations
✿✿✿

are
✿✿✿✿✿✿✿✿

shown.
✿

Note that the piecewise constant progression of the functions
shown in Figure 5 is due to the limited resolution of the underlying image data, cf. Table 1.

Finally, we consider the mean geodesic tortuosity τ and the constrictivity β of the pore
space. Both quantities have a strong impact on effective transport properties such as effective
diffusivity or permeability, see, e.g., [22, 23]. Intuitively speaking, the mean geodesic tortuosity
can be defined as the quotient of the expected length of shortest paths through the material,
which are fully contained in the phase under consideration, divided by the thickness of the
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Figure 5. Comparison of spherical contact distribution functions computed
from tomographic and simulated image data, respectively.

material. However, note that there are various notions of tortuosity considered in the literature
that differ from this definition, see [53, 54] for an overview. Constrictivity is a morphological
descriptor, which quantifies the strength of bottleneck effects within the nano- or microstructure
under consideration. For geometrically complex morphologies, this descriptor was introduced
in [55], where it is defined by β = r2min/r

2
max. Here, rmax > 0 is the maximum radius such

that at least half of the pore space can be covered by (possibly overlapping) spheres with
radius rmax that are fully contained in the pore space.

✿✿

In
✿✿✿✿✿✿

other
✿✿✿✿✿✿✿

words,
✿✿✿✿✿

rmax
✿✿✿

is
✿✿✿✿✿✿✿✿

defined
✿✿✿

as

✿✿✿✿✿✿✿

median
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

spherical
✿✿✿✿✿✿✿✿

contact
✿✿✿✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿

function
✿✿✿

of
✿✿✿✿✿

pore
✿✿✿✿✿✿✿

space,
✿✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿

via

✿✿✿✿✿✿✿✿✿✿✿✿✿

morphological
✿✿✿✿✿✿✿✿✿

opening
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

pore
✿✿✿✿✿✿✿

space.
✿

On the other hand, rmin > 0 is the maximum value
such that half of the pore space can be reached by a ball with radius rmin intruding into the
pore space from a predefined starting plane of the material. Thus, β = r2min/r

2
max describes the

strength of bottleneck effects within the pore space [22]. For a formal definition of the quantities
τ, rmin, rmax and β and their respective estimators in the framework of stationary random sets,
we refer to [56]. Figure 6 shows the values of τ, rmin, rmax and β computed from tomographic
image data compared to the mean values of these descriptors computed from 10 realizations of
the respective model. Again, the quantities computed from simulated image data nicely coincide
with those computed from tomographic image data. Furthermore, in Table 3, the mean values
and standard deviations of τ, rmin, rmax and β are given, along with the respective relative error
compared to the corresponding values obtained from tomographic image data. Interestingly, for
CPG100, CPG150 and CPG200, the value of rmin is nearly identical to half of the respective
mean pore width, which is measured by mercury intrusion porosimetry and characterizes the
different samples considered in this paper, cf. Section 2.1.

✿✿✿✿

This
✿✿✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

justifies
✿✿✿

the
✿✿✿✿

use
✿✿✿

of
✿✿✿✿✿

rmin

✿✿✿

for
✿✿✿✿✿✿✿✿✿

purposes
✿✿

of
✿✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

validation.
✿

4. Model calibration by 2D image data

The ability to properly calibrate a stochastic 3D model by means of 2D image data is a
great advantage for real-life applications, as the acquisition of tomographic 3D imaging is rather
expensive in costs and time. Recall that the model parameters of random excursion sets induced
by motion-invariant Gaussian random fields, considered in this paper, are uniquely defined by
the volume fraction and the two-point coverage probabilities of the excursion sets. Moreover,
these descriptors can be reliably estimated from 2D image data. This has been used to fit
stochastic 3D models to 2D SEM data of composite silica materials [57] and solid oxide fuell
cells [32], respectively.
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(a) (b) (c) (d)

(a) (b)

(c) (d)

Figure 6. Comparison of the transport relevant descriptors τ (a), rmin (b),
rmax (c) and β (d) computed from tomographic (blue) and simulated (red) image
data.

Table 3. Mean values and standard deviations of τ , rmin, rmax and β for 10
model realizations, along with the respective relative errors compared to the
corresponding values obtained from tomographic image data.

CPG100 CPG150 CPG200 CPG1000

τ 1.0693±4.01·10−4 1.0719±1.76·10−4 1.0653±2.50·10−4 1.0610±2.04·10−4

error 0.36 % 1.26 % 0.24 % 0.96 %

rmin[nm] 52.349±4.31·10−1 74.092±3.22·10−2 100.22±1.32 380.56±7.59·10−2

error 3.31 % 1.03 % 4.24 % 1.27 %

rmax[nm] 66.600±6.91·10−3 94.953±7.39·10−3 131.38±1.44·10−2 450.12±6.49·10−2

error 0.16 % 0.10 % 8.53 % 2.54 %

β 0.61788±1.03·10−2 0.60888±4.98·10−4 0.58199±1.50·10−2 0.71483±1.07·10−4

error 6.39 % 1.87 % 7.74 % 2.61 %

We now explain how to calibrate the 3D level-set model Ξ, which has been introduced in
Section 3.1, by means of individual 2D cross sections of 3D image data and provide a discussion
of the robustness of this procedure in the case of nanoporous glasses. Furthermore, the estimates
obtained in this way for the model parameters are compared with the estimates obtained from
3D image data. For this, we fix an arbitrary 2D cross section of the 3D image data (orthogonal
to one of the three main axis directions). Note that the techniques described in Section 3.2
for estimating the model parameters λ, a and b from 3D image data can be directly applied to
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2D data, since the volume fraction and, due to the motion invariance of the level-set model Ξ,
also the two-point coverage probabilities of Ξ can be estimated from 2D data. The estimators

for ε, λ, a and b obtained in this way will be denoted by ε̂2D, λ̂2D, â2D and b̂2D, respectively.
Furthermore, the averages of these 2D estimators for ε, λ, a and b over all 2D cross sections

along the three main axis directions are denoted by µ(ε̂2D), µ(λ̂2D), µ(â2D) and µ(̂b2D).

Figure 7 shows the estimated probability densities of ε̂2D, λ̂2D, â2D and b̂2D, which we obtained
by kernel density estimation using the method described in [58].

✿✿✿✿

Note
✿✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimator
✿✿✿✿

for
✿✿

ε

✿

is
✿✿✿

in
✿✿

a
✿✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿
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✿✿
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✿✿

λ
✿✿✿✿✿✿✿✿✿
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✿✿✿
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✿✿✿✿✿✿✿✿✿✿✿✿

cumulative
✿✿✿✿✿✿✿✿✿✿✿✿

distribution
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normal
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distribution.
✿✿✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

non-linear,
✿✿✿
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✿✿
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priori
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✿✿✿✿
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✿✿✿✿✿✿✿✿✿✿✿✿

expectation
✿✿
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✿✿✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
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✿✿✿✿
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✿✿✿✿
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ε
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✿✿
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✿✿✿✿
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✿✿✿

to
✿✿✿✿✿✿
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✿✿✿
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✿✿✿
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✿✿✿✿✿✿

easier
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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✿✿✿
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✿✿✿✿
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results
✿✿✿✿✿✿✿✿✿

through
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✿✿✿✿✿✿
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✿✿✿✿✿✿✿✿

intuitive
✿✿✿✿✿✿✿✿✿

quantity
✿✿✿

ε.
✿✿

The mean
values of these 2D estimates, together with their standard deviations and the respective relative
errors compared to the values obtained for the corresponding 3D estimators are provided in
Table 4. Here, one can observe that, on average, the 2D estimators lead to nearly identical
values as their 3D counterparts. However, the probability densities of the 2D estimates shown
in Figure 7 reveal that for individual 2D cross sections, the numerical differences between 2D
estimators and 3D estimators can be relatively large. This is not surprising, as an individual
2D cross section contains significantly less information compared to the complete 3D image. In
this section, we only show the results which we obtained for the samples CPG150 and CPG200,
since these are the samples with the highest and lowest sum of relative errors, respectively.
The corresponding results obtained for CPG100 and CPG1000 are shown in Figure A1 of the
Appendix.

Table 4. Mean values and standard deviations of model parameters estimated
from 2D cross sections of tomographic 3D image data and their respective relative
errors compared to the values obtained for the corresponding 3D estimators
based on the full tomographic datasets.

CPG100 CPG150 CPG200 CPG1000

µ(â2D)[1/µm] 27.01± 0.72 18.95± 1.4 15.31± 0.22 3.874± 0.24

error 0.48 % 1.70 % 0.04 % 0.66 %

µ(̂b2D)[1/µm
2] 37.12± 3.9 15.16± 4.1 5.796± 0.69 1.250± 0.20

error 2.82 % 1.97 % 0.30 % 1.49 %

µ(λ̂2D) −0.007244± 0.041 −0.008265± 0.048 0.03196± 0.038 0.1016± 0.032

error 3.67 % 9.91 % 1.93 % 1.20 %

µ(ε̂2D) 0.5029± 0.016 0.5033± 0.019 0.4873± 0.015 0.4596± 0.013

error 0.02 % 0.06 % 0.06 % 0.09 %

Note that from the results shown in Figure 7 and Table 4 it can not directly be concluded how
the discrepancies in terms of the estimated model parameters λ, a and b influence transport-
relevant morphological descriptors, such as the tortuosity τ and the constrictivity β, of simulated

image data drawn from level-set models for given values of λ̂2D, â2D and b̂2D. We quantitatively
study this effect under the assumption that the volume fraction ε and, thus, the model parameter
λ are estimated correctly. This is a reasonable assumption, since in many applications the
porosity ε can be reliably determined not only from image data, bit also by means of other

experimental methods. The influence of the estimators â2D and b̂2D is investigated by means of
a simulation study as follows. For each sample, we generate virtual nanostructures for each of
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Figure 7. Probability densities of the values obtained for ε̂2D, λ̂2D, â2D and b̂2D,
respectively, for all 2D cross sections along the three main axis directions. The

vertical lines show the respective averages µ(ε̂2D), µ(λ̂2D), µ(â2D) and µ(̂b2D)
(blue), and the values obtained for the corresponding 3D estimators (red).

the following five specifications of the parameter vector (a, b):

(µ(â2D), µ(̂b2D)), (µ(â2D) + σa, µ(̂b2D) + σb), (µ(â2D) + σa, µ(̂b2D)− σb),

(µ(â2D)− σa, µ(̂b2D) + σb), (µ(â2D)− σa, µ(̂b2D)− σb),
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where σa and σb denote the standard deviation of â2D and b̂2D, respectively, given in Table 4.
Then, we compute the tortuosity τ and the constrictivity β for simulated 3D image data drawn
from the level-set models with these five specifications of (a, b) and compare the obtained values
with the values of τ and β computed for realizations of the level-set model Ξ calibrated by means
of tomographic (3D) image data, and for the tomographic image data itself. The results obtained
in this way for the samples CPG150 and CPU200 are shown in Figure 8. The corresponding
results for CPG100 and CPG1000 are shown in Figure A2 of the Appendix.

(a) (b)

(c) (d)

Figure 8. Tortuosity (a) and constrictivity (b) for CPG150 and as well as
tortuosity (c) and constrictivity (d) for CPG200, computed from simulated 3D
image data drawn from level-set models with different specifications of (a, b),
together with the corresponding values estimated from tomographic image data.

Except for the constrictivity β of sample CPG150, the values obtained for τ and β, when
calibrating the level-set model Ξ by tomographic (3D) image data, are accurately reproduced
by the modified models, for which the parameter vector (a, b) is chosen as described above, i.e.,
by adding or subtracting the corresponding standard deviations to/from the averages of the

estimators â2D and b̂2D. The good accordance for CPG200, see Figure 8d, can be attributed

to the fact that the values of â2D and b̂2D computed from individual 2D slices have only small
deviations from the corresponding 3D estimates, see Table 4. In general, one can observe that
the constrictivity β is much more sensitive to changes in the model parameters a and b than
mean geodesic tortuosity τ . This is most visible for sample CPG150, see Figure 8. Here, the
difference between the parameters a and b estimated from 2D data and those estimated from 3D
data cause considerable deviations in constrictivity β, while the tortuosity τ is almost entirely
unaffected.

5. Relationships between mean pore width and the entire 3D morphology

In this section, we use the calibrated stochastic 3D model to quantify relationships between
the mean pore width, which can be adjusted during the manufacturing process, and the entire
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3D morphology. In doing so, we aim at simulating the morphology of nanoporous glasses, for
which no 3D image data is available or which have not even been manufactured so far. For
this purpose, we proceed similarly as in [59, 60], i.e., we quantify relationships between mean
pore width and model parameters in order to predict the 3D morphology of porous glass with
a predefined mean pore width.

Recall that the CPG samples considered in this paper are labeled according to their respective
mean pore widths of 100, 150, 200 and 1000 nm, which have been determined by means of
mercury intrusion porosimetry. For quantifying relationships between the mean pore width and
the parameter vector (a, b) of the covariance function of the underlying Gaussian random field
X, see Section 3.2, it turns out that the functions fa, fb : [0,∞) → [0,∞)

✿✿✿✿✿✿✿✿✿✿

parametric
✿✿✿✿✿✿✿✿✿✿

functions

✿✿

of
✿✿✿✿

the
✿✿✿✿✿

form
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

f : [0,∞) → [0,∞), given by

fa(x) = c(1)a exp(−c(2)ax) + c(3)a, fb(x)= c
(1)
b exp(−c

(2)
b x) + c

(3)
b (7)

for each x ≥ 0, are an appropriate tool. Here, x represents the mean pore width of the ma-
terial under consideration, fa(x) and fb(x) are

✿✿✿✿

and
✿✿✿✿✿

f(x)
✿✿

is
✿

the “best” predicted values
✿✿✿✿✿

value
of the model parameters a and b, respectively, given that the mean pore width is equal to x,

where the regression coefficients c
(1)
a , c

(2)
a , c

(3)
a , c

(1)
b , c

(2)
b , c

(3)
b > 0 are determined by least-squares

fitting. In particular, for the four sammples CPG100, CPG150, CPG200 and CPG1000 with

mean pore width x of 100, 150, 200
✿

.
✿✿✿✿

We
✿✿✿✿✿✿✿✿✿✿

determine
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

c
(1)
a , c

(2)
a , c

(3)
a > 0

✿

and 1000 nm, respectively,

and the estimated parameter vectors (â, b̂)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

c
(1)
b , c

(2)
b , c

(3)
b > 0

✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

predicting
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

a

✿✿✿✿

and
✿✿

b,
✿✿✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿

least-squares
✿✿✿✿✿✿

fitting
✿✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿

values
✿

given in Table 2, we get that

c
(1)
a = 0.04703, c

(2)
a = 0.007238, c

(3)
a = 0.0039, c

(1)
b = 2.791 · 10−4, c

(2)
b = 0.02019, c

(3)
b = 1.158 · 10−6.

Note
✿✿✿✿✿✿

which
✿✿✿✿✿

yields
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

c
(1)
a = 0.04703, c

(2)
a = 0.007238, c

(3)
a = 0.0039, c

(1)
b = 2.791 · 10−4, c

(2)
b = 0.02019,

✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

c
(3)
b = 1.158 · 10−6.

✿✿✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿✿✿

prediction
✿✿✿✿✿✿✿✿✿✿

functions
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿

denoted
✿✿✿

by
✿✿✿

fa
✿✿✿✿✿

and
✿✿✿✿

fb.

✿✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿

note
✿

that inserting the parameters a = fa(x) and b = fb(x) predicted by the func-
tions given in

✿✿✿✿✿✿✿✿✿

Equation (7) with these regression coefficients into Equation (6) yields a prediction
for the specific surface area SΞ, where we assume a porosity of ε = 0.5 for all mean pore widths,
see Figure 9.

(a) (b) (c)

(a) (b) (c)

Figure 9. Regression curves for predicting the model parameters a (left) an b
(center) for mean pore widths, for which no 3D image data is available. Pre-
diction of specific surface area using these regression curves and Equation (6)
(right)

Model realizations with intermediate mean pore widths based on the predicted parameters a
and b are visualised in Figure 10, with an assumed porosity of ε = 0.5.

Using the idea of cross-validation, see Section 7.10 in [61], we assessed
✿✿✿✿✿✿

assess the predictive

power of the regression model given in Equation (7), where the coefficients c
(1)
a , c

(2)
a , c

(3)
a , c

(1)
b , c

(2)
b , c

(3)
b
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mean pore width [nm]

100 125 150 175 200 250

Figure 10. Top row: 3D renderings of tomographic image data for mean pore
widths of 100, 150, and 200 nm. Bottom row: predictively simulated 3D mor-
phologies for mean pore widths of 125, 175, and 250 nm.

(a) (b) (c) (d)

(a) (b)

(c) (d)

Figure 11. Comparison of the transport-relevant descriptors τ (a), rmin (b),
rmax (c) and β (d), computed from simulated 3D morphologies for regression-
based (red) and image-based (green) estimates of the model parameters a and b,
as well as directly computed from tomographic image data (blue).

were
✿✿✿

are
✿

now fitted twice, in each case based on three samples only, i.e., disregarding CPG150
and CPG200, respectively. Then, we evaluated

✿✿✿✿✿✿✿✿

evaluate
✿

the accuracy of the relationships given

in Equation (7), where the regression coefficients c
(1)
a , c

(2)
a , c

(3)
a , c

(1)
b , c

(2)
b , c

(3)
b were

✿✿

are
✿

computed
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as described above. In particular, we compared
✿✿✿✿✿✿✿✿

compare the values obtained in this way for the
model parameters a and b for the mean pore widths of 150 nm and 200 nm with the estimates

â and b̂ computed from tomographic (3D) image data for CPG150 and CPG200, as described
in Section 3.2. Here we obtain relative errors of 4.27 % and 4.35 % for a and b of CPG150,
and e 7.38 % and 8.00 % for a and b of CPG200, respectively. This shows that the interpolated
model parameters are close to those estimated from tomographic image data. The regression
curves fitted without one of the samples CPG150 and CPG200 are provided in the Appendix,
see Figure A3.

Based on the model parameters a and b obtained from these regression models, we generated

✿✿✿✿✿✿✿✿

generate
✿

new (simulated) 3D morphologies for CPG150 and CPG20. Furthermore, we compared

✿✿✿✿✿✿✿✿

compare
✿

the average values of the transport-relevant descriptors τ , rmin, rmax and β obtained
for 10 realizations of these 3D morphologies with those obtained for 10 realizations of simulated
3D morphologies, where a and b have been estimated from tomographic (3D) image data for
CPG150 and CPG20 as described in Section 3.2, as well as with those values of τ , rmin, rmax and
β directly computed from tomographic image data, see Figure 11. The results obtained in this
way show that, overall, the simulated 3D morphologies for regression-based and image-based
estimates of the model parameters a and b are similar to those of tomographic image data.

6. Conclusions

In the present paper, we developed and calibrated a stochastic 3D model for differently
manufactured nanoporous glasses based on tomographic X-ray image data. Model validation
is performed by comparing morphological descriptors computed from model realizations and
image data, which are not used for model calibration and are nevertheless matched with a
high degree of accuracy. We want to emphasize that the utilized model, which is based on
methods of stochastic geometry, has certain advantages in comparison to non-parametric or
high-dimensional generative models, see also the discussion in [62]. Namely, it is fully determined
by three parameters only, which allows us to physically interpret their values. Moreover, we
discuss the form of the correlation functions of the underlying Gaussian random field and relate
them to the manufacturing process.

We also show that the model can be reliably calibrated merely based on 2D information in the
form of image cross sections taken from the complete 3D image data. In particular, our analysis
showed that the average calibration over multiple cross-sections leads to nearly identical results
compared to the calibration based on 3D image data. This means that for model calibration, a
collection of sufficiently many 2D images can replace the need for the acquisition of tomographic
3D image data. However, the variance among different 2D cross sections is not negligible and
can have a large impact on sensitive morphological descriptors, such as constrictivity, which
introduces a significant uncertainty if model calibration is based only on single cross sections.

The available image data covered samples of nanoporous glass with different mean pore
widths. By means of a parametric regression, we were able to quantify the relationship between
the mean pore width, which can be adjusted in the manufacturing process, and the resulting
morphological descriptors. This, in turn, allows us to interpolate between the available data
samples and to predict virtual 3D morphologies with intermediate mean pore widths that have
not been manufactured so far. We validated our predictive simulations by means of cross-
validation, which showed that using a subset of the available samples to predict the properties
of the remaining samples leads to accurate results. A reliable virtual prediction of nanoporous
glass with predefined pore widths opens new possibilities for a resource efficient optimization of
the 3D morphology of nanoporous glass. More precisely, it allows for optimizing the mean pore
widths with respect to morphological descriptors that can not directly be adjusted during the
manufacturing process. Furthermore, combining stochastic modeling with numerical simulation
can be used in future work to optimize the mean pore width with respect to physical properties
like effective diffusivity.



18

Acknowledgements

P.H. greatfully acknowledges financial support from Hamburg University of Technology
(TUHH) within the I3-Lab ‘Adaptive optical material based on water condensation in nano-
porous structures’. Moreover, the present paper contributes to the research performed at
CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe). The work by MN was
funded by the German Research Foundation (DFG) under Project ID 390874152 (POLiS Cluster
of Excellence, EXC 2154).

References

[1] D. Enke, F. Janowski, and W. Schwieger. Porous glasses in the 21st century—a short
review. Microporous and Mesoporous Materials, 60:19–30, 2003.

[2] A. Shakhov, C. Reichenbach, D. Kondrashova, P. Zeigermann, D. Mehlhorn, D. Enke, and
R. Valiullin. Exploring internal structure of nanoporous glasses obtained by leaching of
phase-separated alkali borosilicate glasses. Chemie Ingenieur Technik, 85(11):1734–1741,
2013.

[3] S. Gruener, T. Hofmann, D. Wallacher, A. V. Kityk, and P. Huber. Capillary rise of water
in hydrophilic nanopores. Physical Review E, 79:67301, 2009.

[4] P. Huber. Soft matter in hard confinement: phase transition thermodynamics, structure,
texture, diffusion and flow in nanoporous media. Journal of Physics: Condensed Matter,
27(10):103102, 2015.

[5] B. Maillet, G. Dittrich, P. Huber, and P. Coussot. Diffusionlike drying of a nanoporous
solid as revealed by magnetic resonance imaging. Physical Review Applied, 10(1):1, 2022.

[6] D. Gruszka, S. Schmid, and C. Dekker. Nanopores: a versatile tool to study protein
dynamics. Essays in Biochemistry, 65:93–107, 2021.

[7] S. Hayashi, K. Ito, M. Nonoguchi, Y. Takasaki, and K. Imada. Immobilization of a fructosyl-
transferring enzyme from aureobasidium sp. on shirasu porous glass. Journal of Fermen-
tation and Bioengineering, 72(1):68–70, 1991.

[8] A. A. Tsygankov, Y. Hirata, M. Miyake, Y. Asada, and J. Miyake. Photobioreactor with
photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. Jour-
nal of Fermentation and Bioengineering, 77(5):575–578, 1994.

[9] F. Baumann, T. Paul, S. Wassersleben, R. Regenthal, D. Enke, and A. Aigner. Characteri-
zation of drug release from mesoporous SiO2-based membranes with variable pore structure
and geometry. Pharmaceutics, 14(6):1184, 2022.

[10] C. J. Brinker and G. W. Scherer. Sol-Gel Science: the Physics and Chemistry of Sol-Gel
Processing. Academic Press, San Diego, CA, 2013.

[11] T. H. Elmer. Porous and reconstructed glasses. In S. J. Schneider, editor, Engineered
Materials Handbook, Vol. 4: Ceramics and Glasses, ASM International, pages 427–432.
CRC Press, Materials Park, OH, 1991.

[12] D. Enke, R. Gläser, and U. Tallarek. Sol-gel and porous glass-based silica monoliths with hi-
erarchical pore structure for solid-liquid catalysis. Chemie Ingenieur Technik, 88(11):1561–
1585, 2016.

[13] A. Inayat, B. Reinhardt, J. Herwig, C. Küster, H. Uhlig, S. Krenkel, E. Rädlein, and
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[29] C. Lantuéjoul. Geostatistical Simulation: Models and Algorithms. Springer, Berlin, 2002.
[30] L. D. Gelb and K. E. Gubbins. Characterization of porous glasses: Simulation mod-

els, adsorption isotherms, and the Brunauer-Emmett-Teller analysis method. Langmuir,
14(8):2097–2111, 1998.



20

[31] L. D. Gelb and K. E. Gubbins. Pore size distributions in porous glasses: a computer
simulation study. Langmuir, 15(2):305–308, 1999.

[32] B. Abdallah, F. Willot, and D. Jeulin. Morphological modelling of three-phase microstruc-
tures of anode layers using SEM images. Journal of Microscopy, 263(1):51–63, 2016.

[33] H. Moussaoui, J. Laurencin, Y. Gavet, G. Delette, M. Hubert, P. Cloetens, T. Le Bihan,
and J. Debayle. Stochastic geometrical modeling of solid oxide cells electrodes validated
on 3D reconstructions. Computational Materials Science, 143:262–276, 2018.

[34] H. Moussaoui, R. K. Sharma, J. Debayle, Y. Gavet, G. Delette, and J. Laurencin. Mi-
crostructural correlations for specific surface area and triple phase boundary length for
composite electrodes of solid oxide cells. Journal of Power Sources, 412:736–748, 2019.

[35] M. Neumann, B. Abdallah, L. Holzer, F. Willot, and V. Schmidt. Stochastic 3D modeling
of three-phase microstructures for the prediction of transport properties in solid oxide fuel
cells. Transport in Porous Media, 128:179–200, 2019.

[36] M. Neumann, M. Osenberg, A. Hilger, D. Franzen, T. Turek, I. Manke, and V. Schmidt.
On a pluri-gaussian model for three-phase microstructures, with applications to 3D image
data of gas-diffusion electrodes. Computational Materials Science, 156:325–331, 2019.

[37] J. Quintanilla, R. F. Reidy, B. P. Gorman, and D. W. Mueller. Gaussian random field
models of aerogels. Journal of Applied Physics, 93(8):4584–4589, 2003.

[38] E. Roubin, J.-B. Colliat, and N. Benkemoun. Meso-scale modeling of concrete: a mor-
phological description based on excursion sets of random fields. Computational Materials
Science, 102:183–195, 2015.

[39] C. Soyarslan, S. Bargmann, M. Pradas, and J. Weissmüller. 3D stochastic bicontinuous
microstructures: Generation, topology and elasticity. Acta Materialia, 149:326–340, 2018.

[40] P. Levitz. Off-lattice reconstruction of porous media: Critical evaluation, geometrical
confinement and molecular transport. Advances in Colloid and Interface Science, 1998.

[41] D. P. Bentz, E. J. Garboczi, and D. A. Quenard. Modelling drying shrinkage in recon-
structed porous materials: application to porous vycor glass. Modelling and Simulation in
Materials Science and Engineering, 6(3):211, 1998.

[42] B. Jähne. Digital Image Processing. Springer, Berlin, 6th edition, 2013.
[43] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 05),
volume 2, pages 60–65. IEEE, 2005.
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Appendix

The Appendix contains plots, analogous to those of Figures 7 and 8, for the remaining samples
CPG100 and CPG1000 which are not shown in the main text, see Figures A1 and A2. Moreover,
the plots of the regression curves are shown, which are used for cross validation of the predictive
simulations considered in Section 5, see Figure A3.

Figure A1. Probability densities of the values obtained for ε̂2D, λ̂2D, â2D and

b̂2D, respectively, for all 2D cross sections along the three main axis directions.

The vertical lines show the respective averages µ(ε̂2D), µ(λ̂2D), µ(â2D) and µ(̂b2D)
(blue), and the values obtained for the corresponding 3D estimators (red).
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(a) (b)

(c) (d)

Figure A2. Tortuosity (a) and constrictivity (b) for CPG100 and as well as
tortuosity (c) and constrictivity (d) for CPG1000, computed from simulated 3D
image data drawn from level-set models with different specifications of (a, b),
together with the corresponding values estimated from tomographic image data.

Figure A3. Regression curves for predicting the model parameters a (left) and
b (right) for mean pore widths, for which no 3D image data is available, disre-
garding CPG150 (top row) and CPG200 (bottom row), respectively.


